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ABSTRACT
Machine learning algorithms use the past and the present to predict
the future. But when given biased historical data, these algorithms
can quickly become discriminatory. The area of machine learning
fairness has emerged to detect and de-bias these algorithms, but
has received widespread criticism for its one-size-fits-all approach,
which allows certain cases of bias to slip through the cracks. In
this study, we take a deeper look at the mechanisms by which
machine learning algorithms develop harmful bias. We introduce a
new method to interpret discriminatory systems, an Evolutionary
algorithm for Feature Interaction (EFI), which we apply to several
commonly used machine learning algorithms in two real-world
problem instances: violent crime and median house price prediction.
In the results, we discover several complex forms of bias, including
the encoding of race through seemingly unrelated attributes and
the direct use of race information as a proxy for neighborhood
quality and conditions. Ultimately we suggest that more informative
interpretation tools such as EFI can be used to not only explain
machine learning outcomes, but supplement and improve existing
machine bias detection approaches to provide a more robust and
in-depth evaluation of machine learning algorithms.
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1 INTRODUCTION
Artificial intelligence (AI) and machine learning (ML) have rev-
olutionized the modern world, but also raised a host of difficult
questions. Whose interests do AI systems serve? How can we detect
bias and unfairness in these systems?What can we do about it? This
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paper focuses on two such questions: 1) how can we understand
the decisions made by AI systems, and 2) how can we ensure that
AI systems are treating people fairly? Understanding AI systems is
important both in its own right, and as a step toward evaluating
fairness.

The predictive power of ML algorithms comes from their abil-
ity to internalize and represent features and their complex rela-
tionships. However, this same complexity poses a challenge when
it comes to deciding questions of trust and accountability. Inter-
pretable Machine Learning (iML) has the goal of making black-box
ML systems understandable to human interpreters [13]. The chal-
lenge of fairness has received significant attention due to discoveries
of models making skewed decisions with respect to attributes like
race and gender [6]. ML algorithms can internalize the complex
systems of inequality reflected in our data, and reinforce cycles
of systemic oppression. There have been many advances in ML
fairness, including statistical measures of model bias and automatic
bias removal [16]. Although these approaches may be theoretically
sound, many practitioners are unsatisfied with their black-box and
one-size-fits-all nature [2], and suggest a crucial interplay between
fairness and other machine learning objectives like interpretability,
transparency, and explainability.

In this study, we develop a method to improve interpretability in
complex ML models. We introduce an Evolutionary algorithm for
Feature Interaction (EFI)1, whose contributions to interpretability
are twofold: 1) a bio-inspired approach to efficiently search for
synergistic feature interactions and 2) a novel, permutation based
method to approximate feature interaction strength with improved
efficiency. In the following sections, we present EFI’s methodology
and apply our algorithm to both synthetic and real world example
problems. We show that descriptive interpretability tools can sup-
plement fairness metrics by providing an in depth understanding
of complex ML biases. EFI could also be used as a robust method of
selecting combinations of attributes to examine for intersectional
fairness.

2 BACKGROUND
In this section, we introduce and motivate the methodology of our
approach with an overview of the current state and challenges in
ML interpretability and intersectional fairness.

2.1 Interpretability
According to the Predictive Descriptive Relevant (PDR) framework
for iML development [13], interpretable models and interpretability
tools should maintain a high degree of accuracy (predictive), com-
prehensively describe the model’s predictive process (descriptive),
and offer insights that are comprehensible to the human interpreter

1https://anonymous.4open.science/r/EFI
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(relevant). Post-hoc “after the fact" tools offer a convenient solution,
as they are applied in the post-processing stage of the machine
learning design cycle so do not affect predictive accuracy. How-
ever, post-hoc tools have historically lacked descriptive accuracy,
offering only rudimentary information regarding the relevance or
importance of features and variables [3] [11]. While the relevance
of features can be useful in noise removal and even narrowing the
feature space relevant for interpretation, it tells us little about the
model’s predictive process.

2.2 Feature Interaction
In order to better understand the inner workings of a ML model,
modern post-hoc interpretability tools focus on the interpretation of
the predictive process itself. These tools make a distinction between
the main effect of features and their interaction effect with other
features. A feature interaction, defined as a learned relationship
between two or more features is strong if the model gains more
information from a set of features together than it gains from each
individual feature apart. This interaction is synergistic if exactly
all features are required to produce this effect [19]. Discovering
the global structure of synergistic feature interactions is crucial in
understanding the model’s underlying predictive process.

Although modern interaction-based interpretability tools make
the jump from single feature importance to multi-feature interac-
tion [8] [14], they often fall short in terms of their scalability. Given
an 𝑛-dimensional data set, there are approximately 2𝑛 higher-order
(greater than pairwise) feature interactions in a fitted model. Fur-
thermore, a higher-order feature interaction is composed of expo-
nentially many lower-order interactions, whose signal must filtered
out of the result. Therefore, the estimation of a feature combina-
tion’s interaction strength, weakness, synergy, or redundancy, let
alone multiple, carries a large computational cost.

2.3 Fairness
The same problem of scalability also arises in considerations of ML
fairness. In response to criticism that ML fairness metrics can give
the false sense of having solved a socio-technical problem algo-
rithmically, by patching just one axis of unfairness while ignoring
others [10, 18], there has been a push to recognize Crenshaw’s
notion of ‘intersectionality’ [4] in treatments of ML fairness.2

However, problems arise in the implementation of intersectional
approaches to fairness. As Kearns et al. (2018) write, “There are
exponentially many ways of carving up a population into sub-
groups, and we cannot necessarily identify a small number of these
a priori as the only ones we need to be concerned about." They
define “fairness gerrymandering" as only looking for unfairness
in a small number of pre-defined groups, and show that avoiding
gerrymandering is computationally hard in the worst case [12].

In addition to the scalability problem is the problem of data
scarcity at many of the intersections of minority groups [20]. While
we do not directly study fairness here, our interpretability tools
offer a promising method of efficiently choosing the most relevant
feature interactions in a classifier, which could be adopted as a
solution to fairness gerrymandering in intersectional fairness work.

2This response is at best partial, addressing only one of Hoffmann’s three criticisms,
and skirting all 5 of the traps identified by Selbst et al.

3 METHODOLOGY
In this section, we introduce EFI, a novel, bio-inspired approach
to synergistic feature interaction discovery. EFI applies a powerful
search algorithm designed to efficiently explore the space of higher-
order feature interactions (Fig. 1). When the search is complete, we
consolidate the results and provide a thorough interpretation of the
model’s predictive process.

In the following sections, we discuss the technical details of EFI,
beginning with a formal definition of the inputs, the bio-inspired
search for synergistic feature interactions, and proposed measures
to interpret the search results.

3.1 Data Preprocessing and Model Training
The input to our algorithm is a data set whose rows correspond
to instances or examples and columns correspond to features or
variables. One outcome is designated the target and is the value
that we would like to predict. In a house price prediction data set,
the instances might be houses that have sold in the past, the target
is the price of the house, and the features are variables like location,
number of bedrooms, etc. The goal in house price prediction is
to learn the relationships between these features and the target
variable such that given a house for sale, we can accurately predict
its sale price.

We split the data set into training and testing sets using scikit-
learn’s stratified sampling, which balances the target distribution
across splits [15]. Next, we initialize three commonly used ML
models – Random Forest (RF), Multi-Layer Perceptron (MLP), and
Gradient Boosting (GBDT) – and fit them to the training set. We
select these models due to their high capacity to learn complex,
higher-order, non-linear feature relationships. Due to their high
capacity, their default configurations provide sufficient predictive
accuracy.

3.2 Multi-Objective Genetic Algorithm
Given the fitted model and an unseen testing set, EFI applies a Multi
Objective Genetic Algorithm (MOGA) to search for synergistic
feature interactions. A MOGA is a population-based search and
optimization technique that draws from the natural process of
biological evolution [7].

Given an optimization problem, a set of objectives to direct the
search, and a fitness function to measure the quality of solutions,
a MOGA initializes a random population of candidate solutions,
which are evolved over many generations. A single generation
begins with parent selection, where the current fittest candidate
solutions are chosen to recombine. In the recombination stage, par-
ents share certain aspects of their solutions, in order to create new,
possibly novel offspring. In the next step, the offspring are mutated
and added to the population, and the fittest overall solutions are
selected to survive into the next generation. When the average
population fitness begins to converge, the algorithm is terminated
and the population of high-fitness candidate solutions is returned.

In our MOGA (Fig. 1b), the objectives are to search for the small-
est feature combinations with the strongest feature interaction.
Under the objective of minimizing the size of features combination
we incentivize the population to prioritize synergistic feature in-
teractions containing exactly the features required to produce a
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Figure 1: Given a fitted model and unseen testing testing set (a), EFI employs a Multi-Objective Genetic Algorithm (b) to search
for feature combinations containing synergistic higher-order feature interactions (i). After multiple rounds, search results are
consolidated and analyzed to describe the most synergistic higher-order feature interactions present in the model (c).

strong interaction effect. At the beginning of evolution, a popula-
tion of 200 randomly generated feature combinations is initialized.
In order to select feature combinations for crossover and survival
that optimize these objectives, we apply the fast-nondominated-sort
selection algorithm, proposed in the Non-dominated Sorting Ge-
netic Algorithm II (NSGA-II) [5]. Dominance, allows for the sorting
of candidate solutions in terms of multiple objectives.

Definition 3.1 (Dominance). Given a pair of feature combinations
(𝐹𝑖 , 𝐹 𝑗 ) with attributes 𝑖𝑛𝑡 (interaction) and |𝐹 | (size), 𝐹𝑖 dominates
𝐹 𝑗 iff.

|𝐹𝑖 | < |𝐹 𝑗 | & 𝑖𝑛𝑡 (𝐹𝑖 ) > 𝑖𝑛𝑡 (𝐹 𝑗 ) (1)

The attribute 𝑖𝑛𝑡 estimates the strength of the interaction be-
tween the features. Fast-nondominated-sort divides the population
into fronts, where the first (Pareto) front is the set of feature combi-
nations that are not dominated in terms of either search objective
(Fig. 2). The second front is the set of feature combinations that are
not dominated by any other feature combination not in the first
front, and so on. Once the population has been sorted, entire fronts
are selected until selecting the next front would yield too many
feature combinations. At this stage, fast-nondominated-sort selects
the feature combinations from the current front with the largest
crowding-distance, defined as the Euclidean distance to its nearest
neighbor on the front (Fig. 2). This step prioritizes the selection
of diverse feature combinations from the final selection front, as
feature combinations with a higher crowding-distance are more
likely to be unique [5].

The maximum crowding-distance on the Pareto front is also
used to detect population stagnation, which determines when to

terminate evolution. According to [17], the stagnation of crowding
distance in the Pareto front is a stable measure of population conver-
gence in MOGAs, as it indicates that the Pareto front is maintaining
both a fixed size and structure.

3.2.1 Fitness Function. Given a candidate feature combination, we
estimate its interaction strength using a novel permutation-based
method inspired by an approach proposed by Oh [14]. Permutation-
basedmethods such as permutation feature importance [8] typically
measure the importance of a feature as the error produced by shuf-
fling its values in the testing set. If the feature is relevant to the
model, then corrupting its values should produce a positive change
in error. Proposed as a simple alternative to partial dependence-
based feature interaction measures such as Friedman’s H-statistic
and partial dependence plots [8], Oh’s approach is defined as fol-
lows:

Definition 3.2 (Oh’s Interaction Measure). Given a predictive
model and a feature combination {𝑥1, 𝑥2}, Oh’s approach estimates
the interaction as the difference in error from shuffling the features
together and the summed effect of shuffling individual features
apart.

𝑂ℎ(𝐹 ) = (𝑒𝑟𝑟 (𝑥1) + 𝑒𝑟𝑟 (𝑥2)) − 𝑒𝑟𝑟 ({𝑥1, 𝑥2}) (2)

If there exists an interaction between the features, the associated
error will be reflected multiple times in the sum and only once in
the negation. While Oh’s measure provides a simple and efficient
alternative to partial-dependence based approaches, it presents a
potential theoretical problem: permuting a feature combination
has a potentially propagating effect. Consider the scenario posed
in Fig. 1i, which depicts a 3-feature interaction where the colored
circles represent individual features and their shared and labeled
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Figure 2: Visualization of the combined population from 1000
runs of the MOGA on the MLP, the Pareto front of individu-
als, and an example of the crowding distance between two
individuals on the same front.

regions the interaction between them. If we permute the features
𝑥2 and 𝑥3, depicted as outlining these feature regions with a red
border, it will have the effect of breaking all interactions that these
features are involved in. In this case, 𝑥2 and 𝑥3 are involved in all
interactions, including the pairwise interactions between 𝑥1 and 𝑥2
as well between 𝑥2 and 𝑥3. Thus, the interaction effects of feature
combinations other than 𝑥2 and 𝑥3 will contribute to the measured
result.

In order to account for this problem, we propose an alternative
feature interaction measure. Instead of permuting a set of features
and measuring the error that results, we don’t permute a set of
features and measure the amount of accuracy that remains. Due to
its inverse relationship to Oh’s permutation based method, we coin
this method Not-Perm.

Definition 3.3 (Not-Perm Interaction). Given a predictive model
and feature combination 𝐹 , the interaction strength is estimated as
the difference in remaining accuracy from not shuffling the features
compared to the summed effect of not shuffling individual features
apart.

𝑖𝑛𝑡 (𝐹 ) = 1
𝐾

𝐾∑︁
𝑘=1

𝑎𝑐𝑐 (𝐹 ) − (
∑︁
𝑥𝑖 ∈𝐹

𝑎𝑐𝑐 (𝑥𝑖 )) (3)

Note that this process is repeated 𝐾 = 10 times, as some permu-
tations will be more or less effective in removing the signal from
outside of the feature combination.

It’s important to note that the feature interaction strength mea-
sured by our evaluation function 𝑖𝑛𝑡 alone does not necessarily
quantify pure synergy in themathematical sense, where the strength

of the embedded lower order interactions are removed. However,
in the context of our MOGA, redundant interactions are reduced
by the search objective of minimizing feature subset size.

3.3 Higher-Order Interaction Extraction
Because the MOGA is an inherently stochastic process, the popu-
lation of a single run is not guaranteed to converge to the set of
optimal feature combinations. In order to increase the likelihood
that synergistic feature combinations are discovered, the MOGA
is run 1000 times in parallel, resulting in a set 𝑃 of approximately
200,000 high-performing feature combinations.

We propose several equations to estimate the interaction effect
of an individual feature 𝑥𝑖 , the interaction contained within feature
combinations 𝐹 , and the dependency between feature pairs (𝑥𝑖 , 𝑥 𝑗 ).

Definition 3.4 (Feature-Wise Interaction Effect). A feature 𝑥𝑖 ’s
contribution to feature interactions is estimated as the weighted
occurrence of 𝑥𝑖 in high-quality feature combinations 𝐹𝑖 of 𝑃

𝑜𝑐𝑐 (𝑥𝑖 ) =
∑
𝐹𝑖 ∈𝑃

𝑖𝑛𝑡 (𝐹𝑖 )
|𝐹𝑖 |

|𝑃 | (4)

This metric operates under the assumption that given a feature
combination with an associated feature interaction score, each fea-
ture contributes equally in the interaction. Thus, a feature receives
a high interaction score if it appears many times in high-quality
combinations.

Definition 3.5 (Higher-Order Feature Interaction Strength). A
feature combination 𝐹𝑖 ’s overall interaction strength is estimated
as the weighted occurrence of 𝐹𝑖 as a subset of high-quality feature
combinations in 𝑃 .

𝑜𝑐𝑐 (𝐹𝑖 ) =

∑
𝐹𝑖 ∈𝑃

𝑖𝑛𝑡 (𝐹𝑖 )
2|𝐹𝑖 |−|𝐹𝑖 |−1
|𝑃 | (5)

Note the difference between Definition 3.4 and 3.5. Because we
now consider feature combinations as opposed to individual fea-
tures, we make the assumption that each lower-order interaction
contributes equally to the resulting interaction score, and divide
the interaction score by the number of possible lower-order inter-
actions. Similarly, a feature combination receives a high interaction
score for appearing many times in high quality feature combina-
tions.

Definition 3.6 (Feature Dependency). The dependency of 𝑥𝑖 on
𝑥 𝑗 is estimated as the weighted occurrence of 𝑥𝑖 in feature com-
binations 𝐹𝑖 relative to the weighted occurrence of 𝑥𝑖 in feature
combinations 𝐹𝑖 𝑗 where 𝑥 𝑗 also occurs.

𝑑𝑒𝑝 (𝑥𝑖 , 𝑥 𝑗 ) =

∑
𝐹𝑖 ∈𝑃

𝑖𝑛𝑡 (𝐹 )
2|𝐹𝑖 |−|𝐹𝑖 |−1∑

𝐹𝑖 𝑗 ∈𝑃
𝑖𝑛𝑡 (𝐹𝑖 𝑗 )

2|𝐹𝑖 𝑗 |−|𝐹𝑖 𝑗 |−1

(6)

Despite its one way nature, this measure does not imply, or
attempt to imply causality. A large dependency from one feature
to another suggests that the depended on feature occurs whenever
the depending on feature occurs. From this we can infer that the
depended on feature plays a supporting role in the interaction
between these features.
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(a) MLP feature-wise interaction effect (b) GBDT feature-wise interaction effect (c) RF feature-wise interaction effect

(d) MLP higher-order interaction strength (e) GBDT higher-order interaction strength (f) RF higher-order interaction strength

(g) MLP feature dependency (h) GBDT feature dependency (i) RF feature dependency

Figure 3: EFI’s analysis of the MLP, GBDT and RF fitted to the synthetic data describing the interactivity (a-c) of individual
features, the interaction strength (d-f) of specific feature combinations and the pairwise dependency between features (g-i).

4 RESULTS AND DISCUSSION
In this section, we introduce one synthetic problem instance, and re-
examine two well-studied real-world problem instances to demon-
strate the efficacy and applicability of our approach.

4.1 6-bit Multiplexor
In order to provide a concrete example of the concept of syner-
gistic higher-order feature interaction and how EFI discovers this
phenomenon, we begin with a simple synthetic problem instance
where the ground truth higher-order interactions are known: the
6-bit multiplexer function. Given a 4-bit input string, 2 selector bits
and 1 random bit, the multiplexer function maps the selector bit

input to an integer, and returns the value from the input string at
that index.

In this function, there exist 4 separate 3-way interactions be-
tween the two selector variables and each input variable. These
interactions are pure in the mathematical sense, as exactly all 3
features are required to produce an accurate prediction. If a pre-
dictive model 𝑓 correctly learns the multiplexor function, these
ground-truth interactions should be present in the model.

In order to estimate the descriptive accuracy of EFI in discovering
these higher-order feature interactions, we fit Gradient Boosting
(GBDT), Random Forest (RF), and Multi-Layer Perceptron (MLP)
classification models to a set comprised of all possible binary strings
of length 7, each labeled with the correct output of the function.
Note that we fit the models to the entire data distribution to allow



Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Author and Author, et al.

(a) MLP feature-wise interaction effect (b) GBDT feature-wise interaction effect (c) RF feature-wise interaction effect

(d) MLP higher-order interaction strength (e) GBDT higher-order interaction strength (f) RF higher-order interaction strength

Figure 4: EFI’s analysis of the MLP, GBDT and RF fitted to the LEMAS data set, describing the interactivity (a-c) of individual
features and the interaction strength (d-f) of specific feature combinations.

them to accurately learn the multiplexor function. For each of
these models, EFI is run 1000 times in parallel and the resulting
populations are aggregated and analyzed.

The first relevant outcome is that EFI’s feature-wise interac-
tion effect closely matches classic permutation-based importance
(PERM), which measures both the main and interaction effect of
features (Fig. 3a-c). This match is a correct result, as features have
no direct relationship to the output of the multiplexor function only
an indirect relationship through interactions. This result shows
that Not-Perm is successful in removing the main effect of features.

When examining the feature interactionswith the highest strength
(Fig. 3d-f), the 4 ground-truth interactions between the two selector
variables and each individual input variable emerge with highest
estimated interaction effect. The next most frequently occurring
interactions are not pure in the mathematical sense, as they actu-
ally contain two separate interactions: one between the selector
variables and one input variable and another between the selectors
and another input variable. This is another encouraging result, as it
shows that the multi-objective search mechanism, which prioritizes

smaller, more synergistic feature combinations, was effective in
prioritizing pure synergistic interactions.

The dependencies discovered by EFI (Fig. 3g-i) also provide useful
insight. In these models, EFI discovered a strong dependency of
input variables on selector variables, as shown by the beige regions
of the heat map. This dependencies tell us that the input variables
typically occur in feature combinations where selector variables
occur. This is a correct result, as the values of selector variables
are always required to make accurate predictions. This dependency
is asymmetric, as the selector variables do not depend as heavily
on input variables. In contrast, the selector variables have a strong
co-dependency (symmetric), as they work together to index the
correct input variable.

EFI’s interpretation of these models closely mirrors the inner
dynamics of the multiplexor function. This result provides evidence
for EFI’s descriptive accuracy in discovering higher-order syner-
gistic interactions in synthetic problem instances. In the next two
sections, we explore two real-world problem instances in order
to show EFI’s efficacy in machine bias detection and explanation
problems.
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(a) MLP biased interaction (b) GBDT biased interaction

(c) Racial demographics (d) Racial demographics

Figure 5: Further analysis of the potentially biased feature in-
teractions learned by the MLP (a) and GBDT (b) showing that
neighborhoods in the bounded regions with low predicted
violent crime are disproportionally white (c-d).

4.2 Violent Crime Prediction
Machine crime prediction is one of the most studied problems in ML
where algorithmic bias has been found to reinforce and exacerbate
existing systemic inequalities [1, 6]. The goals of this section and
the next are to demonstrate how EFI picks out and explains the
mechanisms through which ML models internalize bias. We focus
on popular real-world data sets in order to show how EFI performs
on well understood data. The first of these data sets is the 1980 Law
Enforcement Management Administrative Services (LEMAS) data
set3, which encodes per-capita violent crime rates4 along with 122
demographic statistics from 1,994 US neighborhoods.

For this problem instance, we repeat the process of 1000 inde-
pendent runs of the MOGA, population aggregation, and feature
analysis with the same three models used previously, then examine
the results. In the next sections, we focus on interactions that are
relevant to the machine bias problem and discuss their possible
implications.

In the MLP model, EFI discovers a large interaction effect for var-
ious income-related features, such as “pctWWage: the percentage
of households with wage or salary income in 1989", “medIncome:
the median household income", “pctWRetire: the percentage of
households with retirement income", and “rentMedian: the rental
housing median rent" (Fig. 4a). Of the possible interactions between
3LEMAS is Available on the UCI Machine Learning Repository http://archive.ics.uci.
edu/ml/datasets/communities+and+crime.
4The data set description does not go into detail about what gets counted as a violent
crime, beyond saying that it includes numbers for "murder, rape, robbery, and assault".
Based on the information given at https://bjs.ojp.gov/topics/crime, we infer that this
includes incidents "reported to and recorded by police."

these features, the feature combination with the highest score is the
pairwise interaction between “pctWWage" and “pctWSocSec: the
percentage percentage of households with social security income"
(Fig. 4d). That these closely related features are related both to one
another and to crime rates is unsurprising.

A comparison between EFI’s feature-wise interaction effect and
classic permutation-based feature importance (main and interaction
effect) (Fig. 4a) shows that the feature “racepctblack: the percentage
of population that is african american" and “pctUrban: the per-
centage of people living in areas classified as urban" have high
importance in the model, but few interactions with other variables.
This suggests that the model has learned direct relationships be-
tween rates of reported violent crimes, and the proportion of Black
residents in a neighbourhood, or whether a neighbourhood is urban.
Again, these are unsurprising relationships given what is known
about this data set. This result demonstrates how EFI can identify
cases of straightforwardly discriminatory decision-making, should
amodel learned on this data set be used to build a predictive policing
tool.

In the GBDT model, fewer significant interactions appear. The
most frequently occurring feature combination “householdsize: the
mean people per household" and “PctSpeakEnglOnly: the percent of
people who speak only English" (Fig. 4e) has a weighted occurrence
of nearly an order of magnitude less than the largest weighted
occurrence in the MLP model’s results. This result can be attributed
to the fact that the two most important features (Fig. 4b), “pctIlleg:
the percentage of kids born to never married" and “PctKids2Par:
the percentage of kids in family housing with two parents" have a
very strong main effect. Although the interaction (“householdsize",
“PctSpeakEnglOnly") has a relatively low score, a closer analysis
provides valuable insight.

In order to better understand this feature interaction, we dis-
cretize the distribution between these two feature into a heat map,
where the color of each cell represents the average predicted value
of violent crime in neighborhoods of that bin (Fig. 5a). The trans-
parency of each cell represents the number of neighborhoods in
each bin, to indicate which bins are the most relevant for analysis.
The simplified distribution shows that there is a highly populated
region of roughly average “householdsize" and large “PctSpeakEn-
glOnly" with generally low predicted violent crime. We select the
data points that fall within this region, and plot the average racial
demographics of these neighborhoods (Fig. 5c). The selected region
is nearly 80% white, and has lower racial diversity that other neigh-
borhoods. The model has thus discovered an interaction that acts as
a proxy for the whiteness of a neighbourhood. This demonstrates
how EFI can identify cases where decision-making in ML models
depends on proxies for protected classes like race.

In the RF model, a similar phenomenon occurs, where few sig-
nificant interactions prevail due to the strong main effect of the
two most important features: “PctIlleg" and “PctKids2Par" (Fig. 4).
The importance of these features in the RF are presumably due to
the same mechanisms which identified them in the GBDT model,
which maintains a similar tree-based structure. Although the most
frequently occurring feature combination (“numbUrban", “PctBorn-
SameState") has relatively low weighted occurrence, it also has
an interesting explanation. Another heat map is defined (Fig. 5b)
which shows a highly populated region of low “numUrban" and

http://archive.ics.uci.edu/ml/datasets/communities+and+crime
http://archive.ics.uci.edu/ml/datasets/communities+and+crime
https://bjs.ojp.gov/topics/crime
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(a) MLP feature-wise interaction effect (b) GBDT feature-wise interaction effect (c) RF feature-wise interaction effect

(d) MLP higher-order interaction strength (e) GBDT higher-order interaction strength (f) RF higher-order interaction strength

(g) MLP feature dependency (h) GBDT feature dependency (i) RF feature dependency

Figure 6: EFI’s analysis of the MLP, GBDT and RF fitted to the Boston Housing data set, describing the interactivity (a-c) of
individual features, the interaction strength (d-f) of feature combinations and the pairwise dependency between features (g-i).

average to large “PctBornSameState" where predicted violent crime
is very low. A similar analysis of the racial demographic in this
region reveals that these neighborhoods are again nearly 75% white
(Fig. 5d).

This result shows a strong similarity between the GBDT and RF
models. In addition to the direct learned relationships between “Pc-
tIlleg" and “PctKids2Par" with violent crime, the model has learned
an association between their interaction and crime rate. In both
interactions, (“householdsize", “PctSpeakEnglOnly") and (“num-
bUrban", “PctBornSameState"), the models has learned a region of

neighborhoods in the corresponding feature spaces that is predom-
inantly white. Once again, a proxy for race is being used by the
model, which would correspond to discriminatory decision-making
if such a model were used in predictive policing.

Looping back to the theory of feature interaction, these com-
binations provide an excellent example of feature synergy, where
additional information is implicitly contained in a learned relation-
ship. In this case, the models learned two pairwise relationships
that incorporate complex demographic information.
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(a) MLP biased interaction (b) GBDT biased interaction

(c) Neighborhood statistics (d) Neighborhood statistics

Figure 7: Further analysis of the potentially biased feature in-
teractions learned by the MLP (a) and GBDT (b) showing that
neighborhoods in the bounded regions that have a low dis-
tance (DIS) or high accessibility (RAD) to urban centers and
a low value of “B" have a disproportionately low predicted
median house price and generally worse neighborhood sta-
tistics (c-d)

4.3 Median House-price Prediction
Median house-price prediction is another widely studied machine
bias problem. In order to examine the types of biases learned by
ML models in this setting, we use the controversial Boston Housing
data set.5 Originally proposed in 1978 in an analysis of air quality
in urban neighborhoods [9] the Boston Housing data set provides
the median house price and 13 demographic statistics of 506 Boston
neighborhoods drawn from the 1970 US Census.

Part of the controversy surrounding this data set concerns the
feature “B”. The Boston Housing data set originally contained a
feature “Bk: the proportion of blacks by town". This feature was re-
moved and engineered into the feature “B: 1000(Bk - 0.63)2”, which
corresponds to the variance of “Bk" from 63%. It is not entirely clear
why the data was so manipulated, nor why 63% was chosen, but
a possible answer is floated by Carlisle in a 2019 Medium post6.
Carlisle notes that Harrison and Rubinfeld [9] hypothesize a para-
bolic relationship between Bk and house prices, where white flight
pushes up prices in predominantly white neighbourhoods, and
housing discrimination pushes up prices in predominantly Black
neighbourhoods.7 A low value of “B" represents a neighborhood
5The Boston Housing data set is in the scikit-learn library of bench-marking problems
https://scikit-learn.org/stable/datasets/toy_dataset.html#boston-dataset
6https://medium.com/@docintangible/racist-data-destruction-113e3eff54a8
7Carlisle offers evidence that the data in the “B” column may also be inaccurate,
and that the hypothesized parabolic relationship might not exist, making “B” a very
troublesome feature.

with a proportion of Black residents close to 63%, while a high
value corresponds to a neighborhood with either far more or far
fewer than 64% Black residents. In other words, racially segregated
neighbourhoods would have high “B” values, though whether a
high “B” neighbourhood is predominantly Black or white is not
apparent from the data.

In the MLP model, the feature pair “INDUS: the proportion of
non-retail business acres per town" and “RAD: an index of accessi-
bility to radial highways" emerges as the most synergistic feature
interaction (Fig. 6d), having the first and second highest estimated
interaction effect (Fig. 6a). In the dependency structure (Fig. 6),
“RAD" is depended on significantly by almost every other feature,
suggesting that this feature plays a supporting role in many in-
teractions. “RAD" also depends heavily on “INDUS," suggesting
that “RAD" and “INDUS" have a strong two-way interaction, and
explains this combination’s prevalence in the results. In addition,
EFI discovers a relatively strong interaction between the feature “B"
and the feature “RAD," occurring with the third most weighted fre-
quency (Fig. 6d). In the distribution defined by this feature subspace
(Fig. 7a), neighborhoods with high accessibility to radial highways
but a low value of “B" receive a very low predicted median house
prices. In the selected neighborhoods, the average feature values
show worse than average neighborhood conditions (Fig. 7c).

In the RF and GBDT models, EFI discovers a high feature-wise
interaction effect for “LSTAT: the percent lower status of the pop-
ulation," “RM: the average number of rooms per dwelling", and
“DIS: the weighted distances to five Boston employment centres"
(Fig. 6b-c). These features have both strong importance and es-
timated interaction effects, suggesting that feature interaction is
central to these models’ predictions. EFI also discovers a relatively
significant interaction containing the feature “B" with the feature
“DIS" (Fig. 6e-f). In the interaction between “B" and “DIS" the heat
map (Fig. 7b) shows that low values of “DIS" and “B" are associated
with lower predicted median house price. When the neighborhoods
of this region are selected and their average neighborhood statistics
calculated (Fig. 7d), a similar result emerges. These neighborhoods,
marked with strong proximity to economic centers and low “B”,
are associated with generally worse neighborhood conditions.

In all three models, the engineered feature “B" occurs in relevant
interactions, and is used to encode worse than usual neighborhood
conditions. The models have learned that in some contexts, a high
value of “B" is associated with higher housing prices, the use of
these models in a real world setting (though it is hard to imagine
this data set being used to train a contemporary decision-making
system) could encourage racial segregation by assigning higher
housing prices to more segregated neighborhoods.

Some of the complex interactions between features in these mod-
els that turned out to be important would not have been predictable
in advance. This method efficiently finds the most meaningful com-
binations of features that make a difference to the model’s classi-
fications, suggesting a solution to the problem of deciding which
intersections of features are the relevant ones to investigate when
exploring intersectional fairness.

https://scikit-learn.org/stable/datasets/toy_dataset.html##boston-dataset
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5 CONCLUSION
In this study, we explore the application of interpretability in under-
standing the inner mechanisms of machine bias, or how systemic
inequalities in our data are transferred into our predictive mod-
els. In order to achieve this, we introduce a novel, bio-inspired
approach to post-hoc interpretability, EFI, that addresses several
key limitations in the iML area, namely the trade-off between the
descriptive accuracy and computational practicality of feature in-
teraction based approaches, as well as the computational explosion
faced by standard approaches to intersectional fairness. We address
these challenges by leveraging the exploratory power of a multi-
objective genetic algorithm, which we show is capable of efficiently
searching the complex and exponential space of higher-order fea-
ture interactions in order to determine which ones are the most
synergistic and relevant to the model.

In our experimental results, we provide through a combination of
synthetic and real-world problem instances a diverse set of findings.
In the context of sensitive ML applications such as crime and house
price prediction, we show that harmful machine bias canmaterialize
in several of the following forms. In one form, ML models can rely
directly on protected class information, for example the MLP model
using the value of “racepctblack", and that value alone, to predict
violent crime. Alternatively, ML models can learn complex feature
interactions that implicitly correspond to sensitive information.
The latter result motivates the use of more descriptive post-hoc
interpretability tools, such as measures of higher-order feature
interaction, for the application of probing and regulatingMLmodels
in sensitive problem instances. The benefit of more descriptive
probes is not limited to the ability to hold our ML algorithms more
accountable. We believe that the probing of such ML algorithms
with the goal of understanding the inner mechanisms of machine
bias is crucial in the development of ML fairness, where a nuanced
understanding of not only the data, but also the problem, the model,
and a complex set of fairness objectives is required to produce an
ML application that leads to more good than harm.

Although our methodology and results make several key con-
tributions, they also open up several new avenues for future re-
search, namely the MOGA as a useful tool to explore the space of
higher-order feature interactions, and to address the computational
complexity of investigating intersectional fairness. Although the
genetic algorithm is relatively robust, other search mechanisms,
such as Bayesian optimization could also be explored.

One limitation of our approach is the variance of Not-Perm, the
permutation-based method proposed to measure the interaction
strength of a candidate feature combination. The variance of this
approach comes from the random nature of feature permutation.
When many features are permuted at once, some permutations
remove more or less signal from the data than others. This causes
variance in the output of Not-Perm, which causes candidate feature
combinations to sometimes receive unrepresentative fitness scores.

Another avenue of future research includes a more in-depth com-
parison between higher-order feature interactions in sensitive ML
applications and quantitative measure of fairness. In this study, we
mainly discussed those feature interactions in that have a relatively
obvious relationship to machine bias. However, a more empiri-
cal analysis between feature interactions and their relationship to

quantitative measures of fairness could yield surprising instances
of machine bias. Another step for future research would be to apply
this method to contemporary data sets such as are actually in use
in decision-making contexts.
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