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ABSTRACT
Machine Learning (ML) interpretability is a growing field of com-
putational research, of which the goal is to shine a light on black-
box predictive models. We present an evolutionary framework to
improve upon existing post-hoc interpretability metrics, by quan-
tifying feature synergy, or the strength of feature interactions in
high-dimensional prediction problems. In two problem instances
from bioinformatics and climate science, we validate our results
with existing domain research, to show that feature synergy is a
valuable metric for post-hoc interpretability.
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1 INTRODUCTION
Machine learning (ML) prediction problems are increasingly char-
acterized by high-dimensionality, or having hundreds or thousands
of features and variables [5]. In such dimensions, the resulting
complex ML models perform poorly in terms of interpretability, or
the degree to which their underlying predictive processes can be
extracted and understood [6]. However, the underlying predictive
process is an important artifact in many ML applications, especially
when an interpretation of the learned relationships can be used to
derive scientific insight [7].

To address the demand forML interpretability, several approaches
have appeared in the literature. For ML algorithms that are not
inherently interpretable, post-hoc methods aim to approximate
the model’s input-output relation [6]. While feature importance, a
popular post-hoc metric, effectively limits the input space, feature
interaction provides a detailed view of the input-output relation
itself [1] [4]. Although current approaches to feature interaction
improve upon feature importance, they fail to address the issue
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of redundancy in their interactions, and often yield unnecessarily
complex results. In this study, we present a novel evolutionary
framework to quantify and isolate feature synergy, or the strength
of feature interactions in high-dimensional prediction problems.

We explore the efficacy of this framework in two problem in-
stances from bioinformatics and climate science. Due to the ab-
sence of synthetic benchmark data and other approaches to feature
synergy, we validate our results using existing domain research.
Ultimately, we show that feature synergy is a valuable metric for
post-hoc interpretability, especially in ML applications where sci-
entific insight is the goal.

2 METHODOLOGY
In addressing the problem of feature synergy, the multi-objective ge-
netic algorithm (MOGA) for feature selection provides a convenient
solution. In this algorithm, the objective is to evolve a population
of feature subsets with minimal size and testing error in a trained
model [8]. In this selective environment, redundancy in a feature
subset is counterproductive, as it corresponds with increased size.
At termination, the resulting feature subsets are not only compact
and accurate, but also highly synergistic.

In our implementation1, we encode feature subsets with a bi-
nary string: a one in the 𝑖𝑡ℎ position indicates that the 𝑖𝑡ℎ feature
has been selected, while a zero indicates it has not. At initializa-
tion, a random population of 200 binary strings are generated from
the uniform distribution, and each corresponding feature subset’s
fitness is evaluated. To evaluate testing error, we employ k Fold
Cross-Validation to define independent training and testing sets,
and either K Nearest Neighbors (KNN) or Support Vector Machine
(SVM) to trainmodels. Based on the results of evaluation, we employ
the fast-non-dominated sort algorithm [3] to select parents. After
100 parents have been selected, one-point mutation and crossover
are employed to create 100 offspring and the combined popula-
tion of parents and offspring automatically proceed into the next
generation. The MOGA is run 100 times for 1000 generations and
the combined 20,000 feature subsets are collected and analyzed for
feature importance and synergy.

Given a feature 𝑓 and the collection of feature subsets𝐴 where 𝑓
is selected, importance is measured by the degree to which 𝑓 occurs
in compact and accurate subsets.

𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 (𝑓 ) =
∑
𝑎∈𝐴

1 − 𝑒𝑟𝑟𝑜𝑟 (𝑎)
|𝑎 | (1)

Because Equation 1 is dependent on the number of solutions in
the collection, we recommend normalizing the resulting feature
importance distribution between 0 and 1.

1https://github.com/jr2021/GA_feature_synergy.git
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Figure 1: Metabolic synergy (with accuracy-factor) learned
by the MOGA configured with KNN to create models.

Figure 2: Sociopolitical factor synergy (with accuracy-factor)
learned by theMOGAconfiguredwith SVM to createmodels.

Given a pair of features (𝑓𝑖 , 𝑓𝑗 ), a collection of feature subsets
𝐴 where 𝑓𝑖 is selected, and a collection of subsets 𝐵 where 𝑓𝑗 is
selected, synergy is measured by the Jaccard similarity coefficient,
or the degree to which the pair co-occurs.

𝑠𝑦𝑛𝑒𝑟𝑔𝑦 (𝑓𝑖 , 𝑓𝑗 ) = 𝐽 (𝐴, 𝐵) = |𝐴 ∩ 𝐵 |
|𝐴 ∪ 𝐵 | (2)

Due to the random nature of the MOGA, it is possible that a
feature pair (𝑓𝑖 , 𝑓𝑗 ) emerges as synergistic due to a late generation
co-occurrence. In order to isolate direct feature synergies, we rec-
ommend scaling Equation 2 by the testing accuracy of the feature
subset {𝑓𝑖 , 𝑓𝑗 } in a trainedmodel. However, this factor is counterpro-
ductive when searching for higher-order synergistic interactions.

3 RESULTS AND DISCUSSION
We first apply our framework to identify metabolic synergy in knee-
osteoarthritis (OA) patients, using the NFOAS data set from the
Memorial University of Newfoundland. The resulting synergies
(Fig. 1) between the most important metabolites are either inputs
or outputs to the biological synthesis of arginine (Arg). This amino
acid has been previously identified as a bio-marker for OA, due to its
inhibition of cathepsin, an enzyme that degrades cartilage [9]. Fur-
ther analysis of this interaction reveals that these features provide
a clear decision boundary between classes: a high concentration of
Glutamine and Ornathine, paired with a low concentration of Arg
and N-Acetylornithine corresponds to 97% of the case group.

Next, we apply our framework to identify sociopolitical factors
in climate change vulnerability prediction, using the ND-GAIN

Index from the University of Notre Dame. In the results (Fig. 2),
an interaction appears between several health-related factors. This
interaction indicates that the ratio between medical infrastructure
and population health is indicative of a country’s overall vulnerabil-
ity to climate-change-related sea-level-rise, warming, and natural
disaster. Further analysis reveals that several Central and North-
ern African, as well as South and Southeast Asian countries are
especially vulnerable in terms of these factors. In these countries,
low international engagement indicates an incapacity to enact a
policy-driven response [2].

In the above problem instances, the resulting feature synergies
align either with years of extensive bioinformatics research, or
simple and intuitive sociopolitical mechanisms. In the application
of interpretable ML to derive scientific insight, this outcome not
only confirms that models can learn and leverage scientifically valid
and intuitive relationships, but suggests that this combination of
post-hoc metrics provides the necessary information to extract and
understand them. In the context of interpretable ML as a whole,
this suggests that feature synergy is a valuable post-hoc metric
in general, and should be tested in other application areas, such
as identifying and removing machine bias with respect to legally
protected attributes (race, gender, etc.). Feature synergy could also
be applied as a general pre-processing step in order to define more
compact and interpretable models. However, the degree to which
feature synergy is general, or not "over-fit" to the training data, is
presently unknown.
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